USER'S GUIDE

MACHINIST CIIC PRO?

Advanced Machining Math + Materials
Model 4088

$$
\begin{aligned}
& \text { 4344 } \\
& \text { MATL }
\end{aligned}
$$

」ـلـ」
fast. accurate. reliable.

MACHINIST CALC® PRO 2

Abstract

The Machinist Calc ${ }^{\circledR}$ Pro 2 Advanced Machining Math + Materials calculator (Model 4088) provides hundreds of fast, precise machining-specific solutions for turning, drilling, boring and face, end and slot milling. Built-in tables for 20 materials, 6 processes and 3 tools will let you spend much less time looking up your most-needed calculations on charts, in books or on the Internet and more time machining.

The Machinist Calc Pro 2 gives you hundreds of calculations, including:

- Speeds and Feeds
- Built-in Drill and Thread Size reference tables
- Drill Point Cut Depth solutions
- Bolt Pattern hole layouts with center x, y coordinates
- Right triangle math
- Trigonometric solutions
- Wire Sizes and 3-Wire Measurements

Work in and convert between U.S. and Metric units, including:
- Decimal Inches/Mils
- Feet-Inch-Fractions
- m, mm, cm
- Area, Volume and Weight

TABLE OF CONTENTS

GETTING STARTED ... 4
KEY DEFINITIONS .. 4
Basic Function Keys .. 5
Dimensional Function Keys .. 5
Weight and Volume Function Keys.. 7
Trigonometric Function Keys .. 7
Miscellaneous Function Keys ... 8
Machinist Function Keys.. 8
MEMORY OPERATION .. 13
USING THE MACHINIST CALC PRO 2 15
U.S./METRIC MODES 15
MATERIALS, PROCESSES AND TOOLS 15
Materials 15
Processes 16
Tools 17
RPM (SPINDLE SPEED) 17
RPM - Basic 17
RPM - Face Milling 18
RPM - End Milling 19
FEED RATE - IPM. 20
Feed Rate - Based on Cutting Feed and RPM (for Turning) 21
Feed Rate - Based on Cutting Feed and RPM (for Drilling) 21
Feed Rate - Based on Feed per Tooth, RPM and \# of Teeth 22
Feed Rate - End Milling 23
CUTTING SPEED - SFM 25
Cutting Speed - Turning 25
Cutting Speed - End Milling 26
Cutting Speed - Drilling 27
FEED PER TOOTH/CHIP LOAD - IPT 28
Feed per Tooth - Based on Cutting Feed and \# of Teeth 28
Feed per Tooth - Based on Feed Rate, RPM and \# of Teeth 29
Feed per Tooth - Face Milling 29
CUTTING FEED - IPR 31
Cutting Feed - Based on Feed per Tooth and \# of Teeth 31
Cutting Feed - Based on Feed Rate and RPM 32
Cutting Feed - Turning 33
DRILL SIZES 34
Numeric Drill Size Entry 34
Letter Drill Size Entry 35
Inch Drill Size Entry 36
Millimeter Drill Size Entry 37
DRILL POINT 37
THREAD SIZING 38
INTERNAL THREAD 39
EXTERNAL THREAD 40
THREAD CLASSIFICATION 40
Changing Thread Classes 41
Changing a U.S. Thread Classification 41
Changing a Metric Thread Classification 41
Numeric Thread Size 43
Fractional Thread Size 45
Metric Thread Size 47
Custom Thread Percentage 49
WIRE SIZES AND 3-WIRE MEASUREMENTS 50
Wire Size 50
3-Wire Measurement - Known Thread Size and Wire Size 51
Pitch Diameter - Known 3-Wire Measurement and Wire Size 52
BOLT PATTERN 54
Bolt Pattern 54
RIGHT TRIANGLE FUNCTIONS 56
Right Triangle - Based on Adjacent and Opposite Legs 56
Right Triangle - Based on Hypotenuse and Angle 57
CIRCLE CALCULATIONS 58
Circumference and Area - Based on Diameter 58
BASIC D:M:S AND TRIGONOMETRY EXAMPLES 58
Converting Degrees:Minutes:Seconds 58
Time Calculations Using D:M:S 59
Trigonometric Functions 59
APPENDIX 61

GETTING STARTED

KEY DEFINITIONS

You may want to practice getting a feel for your calculator keys by reading through the key definitions and learning how to enter data, how to store values, etc., before proceeding to the examples.

4 - Machinist Calc® Pro 2

Basic Function Keys

On/C On/Clear Key - Turns on power. Pressing once clears the last entry and the display. Pressing twice clears all non-permanent values.

Conv On/C Off — Turns all power off. Clears all nonpermanent values.

Arithmetic operation keys
(0)-9 Keys used for entering numbers.

Conv Convert - Used with the dimensional keys to convert between units or with other keys to access special functions.
Conv RCI Store - Used for storing values.
Conv Rcl Storage Registers M1 through M9 - Used to
(1)-9 store values in memory registers 1 through 9.

RCI
Recall - Used with other keys to recall stored values and settings.
RCI RCI Memory Clear - Clears Accumulative Memory and displays total.
M+ Accumulative Memory - Adds displayed value to Accumulative Memory.
Conv M+ M- - Subtracts displayed value from Accumulative Memory.

Dimensional Function Keys

mm Millimeters (mm) - Identifies entry as millimeters, with repeated presses toggling between linear, area and volume units. Also converts dimensional value to units of millimeters, with repeated presses toggling between millimeters and meters.

Centimeters (cm) - Identifies entry as centimeters, with repeated presses toggling between linear, area and volume units.

Meters (m) — Identifies entry as meters, with repeated presses toggling between linear, area and volume units.

Feet - Identifies entry as Feet, with repeated presses of Conv 7 toggling between linear, area and volume units. Also used with Inch and
I for entering Feet-Inch values. Repeated presses of Conv 7 during conversions toggle between Feet-Inch-Fractions and decimal Feet.

Inch — Identifies entry as Inches, with repeated presses toggling between linear, area and volume units. Entry can be whole or decimal numbers. Also used with \square for entering fractional Inch values (e.g.,
9 Inch (1) 2). Repeated presses during conversions toggle between fractional and decimal Inches.

Fraction Bar - Used to enter fractions. Fractions can be entered as proper (1/2, 1/8, $1 / 16$) or improper (3/2, 9/8). If the denominator (bottom) is not entered, the calculator's fractional accuracy setting is automatically used. Results are always shown in typical dimensional fractional format.

1/1000" (mils) — Multiplies a dimensionless entry by 0.001 Inch and displays the result as Inches. Converts a linear entry to decimal Inches. For both methods, the result is rounded and displayed to three decimal places.

Weight and Volume Function Keys

Conv 6

Conv 4

Conv 3

Conv 2

Conv 1

Conv 0

Tons - Enters or converts a weight or volume value to tons.

Pounds (lbs) - Enters or converts a weight or volume value to pounds.

Metric tons (met tons) - Enters or converts a weight or volume value to metric tons.

Grams - Enters or converts a weight or volume value to grams.
Kilograms (kg) — Enters or converts a weight or volume value to kilograms.
Weight per Volume (wt/vol) - Stores a new weight per volume as pounds per cubic foot or other format as shown below. Default value is 490 pounds per cubic foot of steel.

- Pounds per cubic foot
- Pounds per cubic inch
- Metric tons per cubic meter
- Kilograms per cubic meter

Trigonometric Function Keys

Conv mm

Sine - Calculates the Sine of an entered degree or unitless value.
ArcSine - Calculates the angle for the entered or calculated Sine value.

Cosine - Calculates the Cosine of an entered degree or unitless value.
ArcCosine (ArcCos) - Calculates the angle for the entered or calculated Cosine value.

Tangent (Tan) — Calculates the Tangent of an entered degree or unitless value. for the entered or calculated Tangent value.

Miscellaneous Functions

Conv \%

> Degrees:Minutes:Seconds (dms $\langle\perp$ deg) Converts between D:M:S and decimal degree formats; repeated presses will toggle between the two formats.

Percentage - Used to find a given percent of a number.
x^{2} - Squares the value on the display.
Backspace Function - Used to delete entries one keystroke at a time (unlike the On/C function, which deletes the entire entry).

Square Root (\sqrt{x}) - Calculates the Square Root of the number on the display.

Reciprocal (1/x) - Finds the Reciprocal of a number (e.g., 8 Conv $\because 00.125$).
Clear AII - Returns all stored values to the default settings. Does not affect Preference Settings.
Change Sign (+/-) - Toggle displayed value between negative and positive value.

$$
\text { Pi - Displays value of } \pi \text { (3.1415927). }
$$

Preference Settings (Prefs) - Accesses various customizable settings, such as dimensional answer formats (see Preference Settings section).

Machinist Function Keys

Note: Unitless entries are assumed to be inches in U.S. mode, millimeters in Metric mode.

8 - Machinist Calc Pro 2

Diam Diameter - Enters a Diameter. Calculates circle Area and Circumference given entered Diameter.
Conv Diam Bolt Pattern - Enters the number of holes in a Bolt Pattern. Calculates the hole Center-to-Center Spacing and the x and y coordinates for each hole in a Bolt Pattern given entered Diameter, Number of Bolt Holes, Starting Angle (optional) and Center x and y coordinates.

Mat'l

Conv Mat'l

Tool

Material - Scrolls through 20 Material types. Materials are assigned numbers from 1-20, which can be used to select a particular Material. Materials are used to determine tabular Feed and Speed values. See Materials section on page 16 for the complete list of available materials.
Depth of Cut (DOC) - Enters a Cut Depth for use in determining tabular Feed and Speed values, as well as Material Removal Rate.
Process - Scrolls through six Processes:

1. Face Milling (default)
2. Turning
3. End Milling
4. Boring
5. Slot Milling
6. Drilling

Used to determine tabular Feed and Speed values. Assigned number can be used to select a particular Process.
Width of Cut (WOC) — Enters a Cut Width for use in determining tabular Feed and Speed values, as well as Material Removal Rate and Radial Chip Thinning Adjustment Factor.
Tool - Scrolls through three Tool Types:

1. High Speed Steel (default)
2. Carbide
3. High Performance

Used to determine tabular Feed and Speed
values. Assigned number can be used to select a particular Tool Type.
Conv Tool Length of Cut (LOC) - Enters a Cut Length to

SFM \quad Surface Feet per Minute - Enters or calculates Cutting Speed. Unitless entries are assumed to be Feet in U.S. mode, meters in Metric mode. Calculates Cutting Speed given entered Diameter and RPM. Provides tabular Cutting Speed based on Process, Material, Tooling, Depth of Cut, Width of Cut and Diameter.

Revolutions per Minute - Enters or calculates RPM (Spindle Speed). Calculates RPM given entered Diameter and Cutting Speed. Result is displayed as a whole number.

3-Wire Measurement (3W Measure) - Enters or calculates a Three-Wire Measurement. Calculates the minimum and maximum Three-Wire Measurements and Pitch Diameters given entered Thread Size and Wire Size, assuming an External thread type. If a Three-Wire Measurement value is entered, the Pitch Diameter calculation is based on this entered measurement.

Inches per Tooth — Enters or calculates Chipload or Feed per Tooth (IPT), the chip size of material cut by each tooth. Typically used in Milling operations. Automatically adjusts for Radial Chip Thinning, if applicable, when Process is set to Face or End Milling. Provides tabular Feed per Tooth based on Process, Material, Tooling, Depth of Cut, Width of Cut and Diameter.

Inches per Revolution (IPR) — Enters or calculates Cutting Feed or Feed per Revolution (IPR). Provides tabular Feed per Revolution based on Process, Material, Tooling and Depth of Cut.

IPM Inches per Minute - Enters or calculates Feed Rate or Feed per Minute (IPM). When applicable, also provides Material Removal Rate and Cut Time.
\% of Thread - Enters a non-standard Thread Grip Percentage for use in determining screw Tap Drill Sizes. Default value is 75%.

Thread \quad Thread Size - Enters a numeric, fractional or metric Thread Size and provides Thread characteristics such as Cut Tap Drill Size, Minimum Major Diameter, etc. See Thread Sizing section for further details on entry format, valid entries and a listing of the resulting Thread characteristics.

Thread Classification (Thread Class) — Used to select the Thread Class for numeric and fractional Threads and the Tolerance Class for metric Threads. The default Class for numeric and fractional Thread Sizes is 2B (Internal) and the default Tolerance Class for metric Thread Sizes is 6 H (Internal). See Thread Sizing section for further details on available Classes.

Alpha - Enters alphabet character selection mode. While in this mode, a letter can be selected and used with grive to enter a letter Drill Size. Entering this mode with a unitless entry between 1 and 26 will display the corresponding letter of the alphabet (i.e., 5 Conv 8 displays the letter E). While in Alpha mode, presses of 8 or \mp scroll forward through the alphabet, while presses of scroll backward.
Adjacent (x) - Enters or calculates the Adjacent (horizontal) leg of a right triangle. Calculates Adjacent value given two other right-triangle values. Also enters the Center x-coordinate of a Bolt Pattern.

Opposite (y) - Enters or calculates the Opposite (vertical) leg or height of a right triangle. Calculates Opposite value given two other right-triangle values. Also enters the Center y-coordinate of a Bolt Pattern.
Hypotenuse (r) - Enters or calculates the Hypotenuse (diagonal) of a right triangle.
Calculates Hypotenuse value given two other right-triangle values.

Angle (θ) - Enters or calculates an Angle, providing the Adjacent Angle for both instances. Calculates an Angle given two other right-triangle values. Also enters Lead Angle adjustment for Face Milling, as well as Starting Angle of the first hole of a Bolt Pattern, with 0° being the three o'clock position and the rotation going counterclockwise.

MEMORY OPERATION

Whenever the $\mathbf{M +}$ key is pressed, the displayed value will be added to the Memory. Other Memory functions:

FUNCTION
KEYSTROKE
Add to Memory
Subtract from Memory
Conv M+
Recall total in Memory
Rcl M+
Display/Clear Memory
RCI RCI
Memory is semi-permanent, clearing only when you do one of the following:

- turn off the calculator
— press RCl RCD
— press Conv \mathbf{X} (Clear All).
When Memory is recalled (RC) $\mathbf{M +}$), consecutive presses of
M+ will display the calculated Average and total Count of the accumulated values.

Using M+

3	5	$\mathrm{M}+$$\mathrm{M}+$ m

(cont'd)

Using Memory Storage Keys (M1- M9)

In addition to the standard cumulative Memory (as previously described), your calculator has nine independent Storage Registers - M1 through M9 - that can be used to permanently store single, noncumulative values. The following example shows the use of M1 (Conv RC) (1). To use M2-M9, replace the presses of the 1 key with presses of the corresponding number key (2-9).
You can replace a value in one of these Memory registers by storing a new value in place of the stored value.

FUNCTION

KEYSTROKE
Store single value in M1
Conv Rel 1
Clear M1
(O)Conv RC) 1

Recall M1
RC) 1
Store 175 into M1, recall the value, and then clear the value:

(17) 5 Conv Rc) 1	MEMORY M-Ø1	175.
Conv On/C On/C		0.
(c) 1	$\begin{aligned} & \text { MEMORY } \\ & \text { M-ø1 } \end{aligned}$	175.
(0)Conv Rc) 1	MEMORY M-Ø1	0.

USING THE MACHINIST CALC PRO 2

U.S. AND METRIC MODE SETTINGS

The Machinist Calc Pro 2 allows you to set the calculator to use either U.S. Mode or Metric Mode. The default setting is U.S. units. You can change to Metric Mode by changing your Preference setting (see page 65). The examples in this User's Guide are done in U.S. Mode.

MATERIALS, PROCESSES AND TOOLS

Materials

The Machinist Calc Pro 2 has 20 built-in Material types that can be used to determine tabular Feed and Speed values. You can scroll through the available Materials by repeatedly pressing the Mail' key, or by pressing the Ψ key or key to scroll forward and backward through the Materials.
You can also enter the assigned number (see listing on next page), then press the Maill key to select the Material, which will be set until you select another Material or perform a Clear All (Conv \boldsymbol{X}).
0. No Material (Default)

1. 1020 Low-Carbon Steel
2. 1045 Medium-Carbon Steel
3. 1060 High-Carbon Steel
4. 4140 Chromium-Molybdenum Alloy Steel
5. 4340 Nickel-Chromium-Molybdenum Alloy Steel
6. 52100 Chromium Alloy Steel
7. 304 Austenitic Stainless Steel
8. 316 Austenitic Stainless Steel
9.410 Martensitic Stainless Steel
9. 430 Ferritic Stainless Steel
10. P20 Mold Type Tool Steel
11. H13 Hot Work Tool Steel
12. 2024-T3 Wrought Aluminum Alloy
13. 6061-T6 Wrought Aluminum Alloy
14. A390.0-T5 Cast Aluminum Alloy
15. Ti-6Al-4V Alpha-Beta Titanium Alloy
16. Ti-10V-2Fe-3AI Beta Titanium Alloy
17. Alloy 718 Nickel-Based Heat Resistant Alloy
18. Alloy X Nickel-Based Heat Resistant Alloy
19. Haynes Alloy 188 Colbalt-Based Heat Resistant Alloy

Note: There is a Workpiece Materials Conversion Table in Appendix A.

Processes

The Machinist Calc Pro 2 has six built-in Processes that can be used to determine tabular Feed and Speed values.

You can scroll through the available Processes by repeatedly pressing the Proc key, or by pressing the Ψ key or \square key to scroll forward and backward through the Processes.
You can also enter the assigned number (see following page), then press the Proc key to select the Process, which will be set until you select another Process or perform a Clear All (Conv \boldsymbol{X}).

1. Face Milling (Default) 4. Turning2. End Milling5. Boring3. Slot Milling6. Drilling

Tools

The Machinist Calc Pro 2 has three built-in Tool Types that can be used to determine tabular Feed and Speed values.
You can scroll through the available Tool Types by repeatedly pressing the Tool key, or by pressing the Ψ key or \square key to scroll forward and backward through the Tools.
You can also enter the assigned number (see listing below), then press the Tool key to select the Tool Types, which will be set until you select another Tool or perform a Clear All (Conv \boldsymbol{X}).

1. High Speed Steel (Default)
2. Carbide
3. High Performance

RPM (SPINDLE SPEED)

RPM is the rotational speed of the spindle in revolutions per minute. In a milling machine or drill, the Spindle Speed is the rotation of the attached cutting tool. In a turning machine, it is the rotation of the attached workpiece. RPM can be calculated given values for Diameter and Cutting Speed.

RPM - Basic

Calculate the RPM when milling with a 0.375 " bit at a Cutting Speed of 300 sfm (surface feet per minute):

1. Enter the bit Diameter:
(cont'd)
-3 75 Diam DIAMETER
0.375 INCH
2. Enter the Cut Speed:

CUT SPEED
/MIN 300. FEET
3. Calculate the Spindle Speed (RPM):

RPM - Face Milling

Find the Spindle Speed when milling 1060 Hi -Carbon Steel (3) with a 0.5 " High Performance bit (3) at a Depth of Cut of 0.25 ":

1. Clear the calculator:

On/C On/C
2. Set Process to Face Milling:

3. Set Tooling to High Performance:

4. Set Material to 1060 Hi-Carbon Steel:

1060-HI C. STEEL MATL
5. Enter Depth of Cut:

$$
\text { (2) } 5 \text { Conv Maill (DOC) }
$$

DEPTH OF CUT
0.25 INCH
6. Enter Tool Diameter:

DIAMETER
0.5 INCH
7. Calculate RPM:

8. Show tabular Cut Speed:

CUT SPEED /MIN
600. FEET
9. Now, change the Depth of Cut to 0.1 " and find new RPM and tabular Cut Speed:

RPM - End Milling

Find the Spindle Speed when milling 316 Stainless Steel with a 1 " 4 -fluted Uncoated Carbide bit at a 0.5 " radial Width of Cut. Then, change the Depth of Cut to 0.25 " and recalculate:

1. Clear the calculator:

On/C On/C

\square
2. Set Process to End Milling:

END MILLING
2.
3. Set Tooling to Carbide:
4. Set Material to 316 Stainless Steel (selection \#8):

316-AUS. S. STEEL
MATL
8.
5. Enter Width of Cut:

> -(5) Conv Proc (WOC)

WIDTH OF CUT

0.5 INCH
6. Enter Tool Diameter:

DIAMETER

1. INCH
2. Calculate RPM:

$$
\text { RPM RPM } 802 .
$$

8. Show tabular Cut Speed:

RPM
CUT SPEED
/MIN
9. Now, change Width of Cut to 0.25 " and find new RPM and tabular Cut Speed:

-2) 5 Conv Proc (WOC)	WIDTH OF CUT	
		0.25 INCH
	RPM	
		859.
RPM	CUT SPEED	
RPM	/MIN	225. FEET

FEED RATE - IPM

Feed Rate (IPM) is the speed of the cutting tool's movement relative to the workpiece as the tool makes a cut. You can calculate Feed Rate given values for RPM and either Feed per Tooth (IPT) and number of teeth for Milling operations, or Feed per Revolution (IPR) for all other machine operations.

Feed Rate - Based on Cutting Feed and RPM (for Turning)

Calculate the Feed Rate if you are turning a 1" steel round stock down using a Cutting Feed of 0.031 Inches per Revolution and a rotational speed of 900 RPM:

On/C On/C

 0.1. Enter the Feed per Revolution:
001 Conv IPT (IPR)

FEED/REV.

0.031 INCH
2. Enter the RPM:

$$
900 \mathrm{RPM}
$$

RPM

 900.3. Calculate the Feed Rate:

IPM

FEED/MINUTE
27.900 INCH

Feed Rate - Based on Cutting Feed and RPM (for Drilling)
Calculate the Feed Rate for a Drilling operation that is using a recommended Cutting Feed of 0.004 Inches per Revolution at 800 RPM:

On/C On/C

\square

1. Enter the Cutting Feed:
(4)/1000" Conv IPT (IPR)

FEED/REV.
0.004 INCH
2. Enter the RPM:

80 R 0 RPM | RPM | 800. |
| :--- | :--- |

3. Calculate the Feed Rate:

FEED/MINUTE

3.200 INCH

Feed Rate - Based on Feed per Tooth, RPM and \# of Teeth
Calculate the Feed Rate for a four-fluted end mill using a Feed per Tooth (Chip Load) of 0.005" turning at 1,000 RPM:

1. Enter the Feed per Tooth:
(5)/1000" IPT

FEED/TOOTH
0.005 INCH
2. Enter the Number of Teeth:
(4) Conv IPM (\#Teeth)

NUMBER OF TEETH
4.
3. Enter the RPM:

4. Calculate the Feed Rate:

Feed Rate - End Milling

For End Milling (2), find the Feed Rate (IPM) using 1020 Low-Carbon Steel (1) and a 4-Tooth High Speed Steel Tool (1) with a Diameter of 0.5 ", a 0.25 " Width of Cut and a 20 " Length of Cut. Then, change the Width of Cut to 0.15 " to show the Adjusted Feed per Tooth and the RCT Adjustment Factor. Then, add a 0.125 " Depth of Cut and find the Material Removal Rate, Spindle Power and Spindle Torque:
Conv \boldsymbol{X} ALL CLEARED 0.

1. Select the Process:

END MILLING
2.
2. Select the Tool:

3. Select the Material:

1020-LO C. STEEL MATL
4. Enter the \# of Teeth:
(4) Conv IPM (\#Teeth)

NUMBER OF TEETH
4.
5. Enter the Width of Cut:

$$
\bullet 25 \text { Conv Proc (WOC) }
$$

WIDTH OF CUT
0.25 INCH
6. Enter the Length of Cut:

$$
20 \text { Conv Tool (LOC) }
$$

LENGTH OF CUT
20. INCH
(cont'd)
7. Enter the Diameter:

DIAMETER
0.5 INCH
8. Calculate the Feed Rate:

FEED/MINUTE

IPM

3.667 INCH
9. Calculate the Cut Time:

IPM

CUT TIME MIN
5.454
10. Calculate the RPM:

RPM

917.
918. Change the Width of Cut (Radial Chip Thinning Adjustment):

$$
\text { -15 Conv Proc (WOC) WIDTH OF CUT } 0.15 \mathrm{INCH}
$$

12. Recalculate Feed Rate, Cut Time and RPM:

	FEED/MINUTE	
IPM		9.336 INCH
IPM	CUT TIME MIN	2.142
IPM	RPM	

13. Show Adjusted Feed per Tooth and RCT Adjustment Factor:
14. Now, add a $0.125^{\prime \prime}$ Depth of Cut and find the Material Removal Rate, Spindle Power and Spindle Torque:

-1, 2 Conv Matl (DOC)	$\begin{aligned} & \text { DEPTH OF CUT } \\ & 0.125 \mathrm{INCH} \end{aligned}$
IPM	FEED/MINUTE $9.336 \text { INCH }$
IPM	MATERIAL REMOVAL /MIN $\quad 0.175 \mathrm{CU}$ INCH
IPM	$\begin{array}{ll}\text { SPINDLE POWER } & \\ \text { HP } & 0.123\end{array}$
IPM	SPINDLE TORQUE LBFT 0.602

CUTTING SPEED - SFM

Cutting Speed (SFM) is the speed of the workpiece surface relative to the edge of the cutting tool during a cut, typically measured in Surface Feet per Minute. You can calculate Cutting Speed by entering the Diameter of the tool or material you're using and the RPM (Spindle Speed).

Cutting Speed - Turning

Calculate the Cutting Speed when turning a 4" rod running at 300 RPM:

> On/C On/C

1. Enter the Diameter of the rod:

2. Enter the RPM:
(cont'd)
(3) 0 (0) RPM 20.
3. Calculate the Cutting Speed:

SFM \begin{tabular}{ll}

\hline | CUT SPEED |
| :--- |
| IMIN | \& 314. FEET

\hline
\end{tabular}

Cutting Speed - End Milling

Find the Cutting Speed when End Milling (2) using 1060-High
Carbon Steel (3) using a High Performance 0.5" bit (3) and 0.1 " radial Width of Cut:

1. Select the Process:

> (2) Proc

END MILLING

2.
3. Select the Tooling:

HIGH PERFORMANCE
TOOL 3.
4. Select the Material:

1060-HI C. STEEL
MATL 3.
4. Enter the Width of Cut:
-1 Conv Proc (WOC)

WIDTH OF CUT

0.1 INCH
5. Enter the Diameter:

6. Find the Cutting Speed:
7. Calculate the RPM:

SFM | | RPM |
| :--- | :--- |

Cutting Speed - Drilling

Find the Cutting Speed for Drilling (6) 1020-Low Carbon
Steel (1) with a $0.5^{\prime \prime}$ HSS (1) drill:
Conv \boldsymbol{X} ALL CLEARED 0.

1. Select the Process:
(6)Proc

DRILLING
6.
2. Select the Tooling:

HIGH SPEED STEEL
TOOL 1.
3. Select the Material:

4. Enter the Drill Size:

5. Find the Cutting Speed:
CUT SPEED
/MIN
6. Calculate the Spindle Speed:

SFM	RPM
(cont'd)	

7. Change the Material to 1060-High Carbon Steel and recalculate:

(3) Maill	$\begin{aligned} & \text { 1060-HI C. ST } \\ & \text { MATL } \end{aligned}$	3.
SFM	CUT SPEED /MIN	65. FEET
SFM	RPM	497.

FEED PER TOOTH/CHIP LOAD - IPT

Feed per Tooth (IPT), or Chip Load, is the distance that the workpiece feeds into each tooth on a multi-point cutting tool as it rotates. You can calculate Feed per Tooth given values for Number of Teeth and Cutting Feed (IPR). If the Cutting Feed is not known, the Feed per Tooth can be calculated given values for Number of Teeth, Feed Rate (IPM) and RPM (Spindle Speed).

Feed per Tooth - Based on Cutting Feed and \# of Teeth

Calculate Feed per Tooth (IPT) with a Cutting Feed (IPR) of 0.024 " for 4 Teeth:
Conv \boldsymbol{X} ALL CLEARED 0.

1. Enter the Cutting Feed:
-(2) (4)Conv (PPT (IPR) FEED/REV.
0.024 INCH
2. Enter the Number of Teeth:
(4) Conv IPM (\#Teeth)

NUMBER OF TEETH
4.
3. Calculate the Feed per Tooth:

Calculate Feed per Tooth (IPT) with a Feed Rate (IPM) of 12.8" per Minute, 4 Teeth and a Spindle Speed of 775 RPM:

On/C On/C

1. Enter the Feed Rate:

$$
10 \cdot 8 \cdot 8 / I P M
$$

FEED/MINUTE

12.8 INCH
2. Enter the Number of Teeth:
4) Conv IPM (\#Teeth)

NUMBER OF TEETH
4.
3. Enter the RPM:

$$
75 \sqrt{7} \sqrt{2 P M} 775
$$

4. Calculate the Feed per Tooth:

IPT

FEED/TOOTH
0.004 INCH

Feed per Tooth - Face Milling

Find the Feed per Tooth (IPT) for Face Milling (2) using 4140-Alloy Steel for Material (4) and a 2-fluted High Speed Steel Tool (1) with a Diameter of 1" and a 0.1" Depth of Cut. Then, add a $0.15^{\prime \prime}$ Width of Cut and 45° Lead Angle:
Conv ALL CLEARED
0.

1. Select the Process:

FACE MILLING
1.
2. Select the Tool:
(cont'd)

HIGH SPEED STEEL TOOL

3. Select the Material:
(4) Mat'l

4140-ALLOY STEEL MATL
4.
4. Enter the Number of Teeth:
(2)Conv IPM (\#Teeth)

NUMBER OF TEETH 2.
5. Enter the Depth of Cut:
-1 Conv Mat'l (DOC)

DEPTH OF CUT
 0.1 INCH

6. Enter the Diameter:

DIAMETER

1. INCH
2. Find the Feed per Tooth and other values:

3. Now, add a Width of Cut to $0.15^{\prime \prime}$ and a 45° Lead Angle and recalculate:

$$
\bullet 1 \text { Conv Proc (WOC) }
$$

WIDTH OF CUT
0.15 INCH

(4) Angle	ANGLE (Θ) 45. ${ }^{\circ}$
[PT	FEED/TOOTH ADJ. 0.024 INCH
[PT	FEED/MINUTE 24.508 INCH
IPT	NUMBER OF TEETH
[PT]	RPM
	516.
[PT	RCT. ADJ. FACTOR
	1.400
[PT]	LEAD ANGLE ADJ.
	1.414

CUTTING FEED - IPR

Cutting Feed is the distance the cutting tool or workpiece advances during one revolution of the spindle, typically measured in Inches per Revolution (IPR). You can calculate Cutting Feed given values for the Feed per Tooth or Chip Load (IPT) and Number of Teeth. If these values are unknown, you can calculate Cutting Feed with Feed Rate (IPM) and RPM (Spindle Speed).

Cutting Feed - Based on Feed per Tooth and \# of Teeth

Calculate the Cutting Feed (IPR) with a Feed per Tooth (IPT) of 0.005 " and 4 Teeth:

1. Enter the Feed per Tooth:
(cont'd)
$000151 P T$

FEED/TOOTH

0.005 INCH
2. Enter the Number of Teeth:

(4) Conv IPM (\#Teeth)

NUMBER OF TEETH
4.
3. Calculate the Cutting Feed:

Conv IPT (IPR)

FEED/REV.

0.020 INCH

Cutting Feed - Based on Feed Rate and RPM

Calculate the Cutting Feed (IPR) using a 15" Feed Rate (IPM) and a Spindle Speed of 800 RPM:

On/C On/C

\square

1. Enter the Feed Rate:

$$
15 \sqrt{1 P M}
$$

FEED/MINUTE
15. INCH
2. Enter the Spindle Speed:

3. Calculate the Cutting Feed:

Cutting Feed - Turning

Find the Cutting Feed (IPR) when Turning (4) 1", 1020
Low-Carbon Steel (1) at a 0.1" Depth of Cut using a High
Speed Steel (1) bit:
Conv X
ALL CLEARED
0.

1. Select the Process:
(4) Proc

TURNING
4.
2. Select the Material:

1 Mat'l

1020-LO C. STEEL MATL
1.
3. Select the Tool:

HIGH SPEED STEEL
TOOL
4. Enter the Depth of Cut:

$$
\bullet(1 \text { Conv Mat'l (DOC) }
$$

DEPTH OF CUT

$$
0.1 \text { INCH }
$$

5. Enter Diameter:

DIAM	
	1. INCH

6. Find the Cutting Feed:

Conv IPT (IPR)		FEED/REV.

DRILL SIZES

The Drime key allows the selection of a desired Drill Size, which can be entered as a:

- Numeric value (whole digits 1 through 97)
- Letter between A and Z
- Fractional or decimal Inch value (max. of 3-1/2")
- Millimeter value (max. of 78 mm).

The selected Drill Size is displayed along with its decimal Inch equivalent. If the entered value doesn't match a Drill Size, the nearest Drill Size is displayed. You can scroll through the available sizes in increasing order with either the Srite key or the Ψ key. The - key displays the available sizes in decreasing order. To set the displayed Drill Size, press On/C (or any other key).

Numeric Drill Size Entry

Enter a \#36 Drill and scroll through the next larger available sizes:

1. Enter the Drill Size:

2. Display the next larger available sizes:

Sifile*

2.75mm DRILL	
SIZE	0.108 INCH
7/64" DRILL	
SIZE	0.109 INCH
\#35 DRILL	
SIZE	0.110 INCH

* Repeated presses of Silime display the next larger Drill Sizes. The \mp and keys will scroll forward and backward, respectively, through all available Drill Sizes.

Letter Drill Size Entry

You can enter letter Drill Sizes by selecting an alphabet character via Alpha Mode (Conv 8) and then storing it using the Brite key. The desired letter can be selected by scrolling through Alpha Mode until the letter is reached or by specifying the numerical order of the letter within the alphabet prior to entering Alpha Mode. Both methods are shown below.

Select Drill Size E by scrolling through Alpha Mode. Then, select Drill Size G by entering the numerical order of the letter (the letter G is 7th in the alphabet):

$$
O n / C \quad O n / C
$$

\square

1. Enter Alpha Mode:

Conv 8 (Alpha)
ALPHA CHARACTER
A
1.
2. Scroll until the letter E is displayed:

ALPHA CHARACTER E 5.
3. Enter as Drill Size:

"E" DRILL
SIZE $\quad 0.250$ INCH
4. View next larger available sizes:

5. Enter order of letter G and enter Alpha Mode:

6. Enter as Drill Size:

"G" DRILL
SIZE
0.261 INCH
 \pm and keys will scroll forward and backward, respectively, through all available Drill Sizes.

Inch Drill Size Entry

Enter hole sizes of $0.3^{\prime \prime}, 1$ " and $1-19 / 64$ ". After entering each
size, scroll through the available sizes to view the next larger
Enter hole sizes of $0.3^{\prime \prime}, 1$ " and $1-19 / 64$ ". After entering each
size, scroll through the available sizes to view the next larger and next smaller sizes:

On/C On/C

ALPHA CHARACTER
G 7.
through all available Drill Sizes.

1. Enter the $0.3^{\prime \prime}$ hole size and view next larger and next smaller sizes:

7.60 mm DRILL SIZE
0.299 INCH
"N" DRILL
SIZE $\quad 0.302$ INCH

19/64" DRILL SIZE
0.297 INCH
2. Enter the 1" hole size and view next larger and next smaller sizes:

(1) Inch Digit	1" DRILL SIZE	1.000 INCH
Silis	25.50mm DRILL	
	SIZE	1.004 INCH
	63/64" DR	
	SIZE	0.984 INCH

3. Enter the 1-19/64" hole size and view next larger and next smaller sizes:
(1) Inch 1976 (4) Silis

$1-19 / 64 "$ DRILL		
SIZE	1.297 INCH	
33.00 mm DRILL		
SIZE	1.299 INCH	
$1-9 / 32 "$ DRILL		
SIZE	1.281 INCH	

Millimeter Drill Size Entry

Enter a 5.7 mm hole size and scroll through the available sizes to view the next larger and next smaller sizes:

$$
\text { On/C On/C } \quad 0
$$

1. Enter the hole size as millimeters:

2. View next larger and next smaller sizes:

PFIIE	5.75mm DRILL	
	SIZE	0.226 INCH
	\#2 D	
	SIZE	0.221 INCH

DRILL POINT

The Drill Point function calculates the Drill Point Cut Depth (length) of the stored Drill Size. By default, the calculation is based on a Cutting Angle of 118°. If a different Angle is desired, it can be stored using the Drill Point function (for example, 102 Conv Prill stores 120°).

Find the Drill Point Cut Depth for a 1/2-Inch drill with a 118° Cutting Angle. Then, find the Cut Depth using a 127° Angle:

1. Enter the Drill Size:

1/2" DRILL
SIZE
0.500 INCH
2. Enter 118° Angle and calculate the Drill Point Cut Depth:
(1) 8 Conv STII

DRILL POINT CUT DPTH
0.150 INCH

DRILL CUT ANGLE 118.000°
1/2" DRILL SIZE
0.500 INCH
3. Enter 127° Angle and calculate the Drill Point Cut Depth:

DRILL POINT CUT	
DPTH	0.125 INCH

THREAD SIZING

 or metric Thread Size and then scroll through the various available Thread characteristics, as shown in the tables provided later in this section.
 Thread Size. Upon entering the Thread Size, the Threads per Inch (TPI) or Pitch is required. If the entered Thread Size is a standard size, continuous presses of the whered key will toggle through the available common TPI or Pitches.
Once the desired TPI/Pitch is reached, pressing On/C stores the Thread Size. If the Thread Size you enter is not a standard size or if you have a non-common TPI/Pitch, you will need to directly enter the TPI/Pitch value, pressing thsieg after entering it in order to store the Thread Size.

The following specifies the entry ranges that the calculator allows for the Thread Size and TPI/Pitch values for numeric, fractional and metric Thread Sizes:

	Thread Size	TPI/Pitch
Numeric	$0,1,2,3,4,5,6,8$, $10,12,14$	less than 100
Fractional	0.06 " to $6 "$	less than 100
Metric	1.6 mm to 300 mm	less than or equal to 10

Note: Entries outside of the ranges mentioned above will result in an Entry Error.

The following tables list the available Thread characteristics provided by the Thread Size function. Note that there are two separate listings, one for Internal Threads and one for External Threads. The listing shown within the Thread Size function is determined by the set Thread Classification (see Thread Classification section).

INTERNAL THREAD

Thread Size
Thread Pitch*
Cut Tap Drill Size**
Roll Tap Drill Size**
Close Fit Drill Size**

Minimum Pitch Diameter
Maximum Pitch Diameter
Minimum Minor Diameter
Maximum Minor Diameter
Minimum Major Diameter

Free Fit Drill Size**

[^0]
EXTERNAL THREAD

Thread Size	Minimum Pitch Diameter
Thread Pitch*	Maximum Major Diameter
Cut Rod Size	Minimum Major Diameter
Roll Shank Size	Maximum Minor Diameter
Maximum Pitch Diameter	
*Thread Pitch is only displayed for Numeric and U.S. Thread Sizes.	
THREAD CLASSIFICATION	

With the Machinist Calc Pro 2 you can choose between Internal and External Threads. Entering a U.S. Thread Size will allow you to choose among U.S. Thread Classes as shown below.

THREAD TYPE	U.S. THREAD CLASSES		
Internal	1 B	$2 \mathrm{~B}^{*}$	3 B
External	1 A	2 A	3 A

Entering a Metric Thread will allow you to choose among Metric Thread Tolerance Classes as shown below.

THREAD TYPE	METRIC THREAD TOLERANCE CLASSES							
Internal	3 G	4 G	5 G	6 G	7 G	8 G	9 G	
	3 H	4 H	5 H	$6 \mathrm{H}^{*}$	7 H	8 H	9 H	
External	3 g	4 g	5 g	6 g	7 g	8 g	9 g	
	3 h	4 h	5 h	6 h	7 h	8 h	9 h	
	3 e	4 e	5 e	6 e	7 e	8 e	9 e	
	3 f	4 f	5 f	6 f	7 f	8 f	9 f	

[^1]
Changing Thread Classes

To display the current Thread Classification, press Conv Thread Repeated presses of Thread $\begin{aligned} & \text { size } \\ & \text { will toggle between External }\end{aligned}$ and Internal Thread Types. You can change the number of a Thread Class by entering the number of the desired class/ grade and pressing Conv $\begin{gathered}\text { Thread } \\ \text { size }\end{gathered}$.

Changing a U.S. Thread Classification

Conv x
 ALL CLEARED 0.

1. Recall the current Thread Classification:

2. Change to U.S. External Thread Class 2:
U.S. EXT. THREAD
2A
3.
4. Change to U.S. External Thread Class 1:

5. Change to U.S. Internal Thread Class 1:

U.S. INT. THREAD

1B

Changing a Metric Thread Classification

Changing a Metric Thread Tolerance Class is done in the same manner, with several selections available for Internal and External Threads.

1. Enter a Tolerance Grade of 4:

4 Conv $\begin{gathered}\text { Thread } \\ \substack{\text { Lze }} \\ (T h r e a d ~ C l a s s) ~\end{gathered}$
MM INT. THREAD 4H 4.
2. Scroll through the available Tolerance Positions for the entered Grade:

Thread	MM EXT. THREAD $4 \mathrm{~g}$	4.
Thread	MM EXT. THREAD 4h	4.
Thread	MM EXT. THREAD 4e	4.
Thread	MM EXT. THREAD 4f	4.
Thread	MM INT. THREAD 4G	4.
Thread	MM INT. THREAD 4H	4.

3. Enter a Tolerance Grade of 6 and scroll through the available Tolerance Positions for the entered Grade:

(6) Conv ${ }_{\text {Theacd }}^{\substack{\text { Size }}}$ (Thread Class)	MM INT. THREAD 6H	6.
Thread	MM EXT. THREAD 6 g	6.
Thread	MM EXT. THREAD 6h	6.
Thread *	MM EXT. THREAD 6 e	6.

* Repeated presses of available Tolerance Positions of the specified Grade.

Note: The number 3 can be entered to select both U.S. and Metric classes. To select either, go to Preferences and set the calculator to either U.S. Mode or Metric Mode.

Numeric Thread Size

Enter an 8-32 screw and scroll through the available Internal Thread (Class 2B) characteristics, then switch to External Thread (Class 2A) and scroll through the available Thread characteristics:

Note: The default U.S. Thread Class is 2B (Internal). To view the current Thread Class, press Conv $\begin{gathered}\text { thread } \\ \text { gizd }\end{gathered}$. To change the class, press Thread again.

Thread Size calculations for Pitch, Major, and Minor Diameter attributes are compliant with ANSI/ASME B.1.1-2003 and ANSI/ ASME B.1.13M-2005.

ALL CLEARED 0.

1. Verify Thread Class is set to $2 B$:

U.S. INT. THREAD 2B 2.
2. Enter the Thread Size:

3. Enter the TPI:
(3) (2) THREAD SIZE 2B 8-32
4. Find the available Internal Thread characteristics:

Thread	THREAD PITCH 0.031 INCH
Thread	TAP DRILL SIZE
	\#29 0.136 INCH
Thread	ROLL TAP DRILL
	3.750 MM

Thread	CLOSE FIT DRILL
	\#18 0.170 INCH
Thread	FREE FIT DRILL
	\#16 0.177 INCH
Thread	PITCH DIAMETER
	MIN 0.144 INCH
Thiead	PITCH DIAMETER
	MAX 0.147 INCH
(Threadsize	MINOR DIAMETER
	MIN $\quad 0.130$ INCH
chiead	MINOR DIAMETER
	MAX 0.139 INCH
Thread	MAJOR DIAMETER
	MIN $\quad 0.164$ INCH

5. Switch to Thread Class 2A:

U.S. EXT. THREAD
2A
6. Clear the display and find the available External Thread characteristics:

On/C	0.
Thread	THREAD SIZE 2A 8-32
Thread	THREAD PITCH $0.031 \text { INCH }$
	ROD SIZE 0.164 INCH
Thread	COLD FORM SIZE 0.141 INCH
Thread	 PITCH DIAMETER MAX 0.143 INCH

Thread	PITCH DIAMETER
	MIN 0.140 INCH
Thread	MAJOR DIAMETER
	MAX 0.163 INCH
Thread	MAJOR DIAMETER
	MIN 0.157 INCH
Thread	MINOR DIAMETER
	MAX 0.126 INCH

Fractional Thread Size

Find the available Internal and External Thread characteristics for a 1/4 Inch, 28 TPI screw:

$$
\text { Conv } \boldsymbol{X} \text { ALL CLEARED } 0
$$

1. Verify Thread Class is set to $2 B$:

2. Enter the Thread Size:

THREAD SIZE	
2B	

3. Enter the TPI and store the final Thread Size:

	THREAD SIZE	
8 Size	2B	0.25-28 INCH

4. Find the available Internal Thread characteristics:

	THREAD PITCH
Size	0.036 INCH
Thread	TAP DRILL SIZE
	\#3 0.213 INCH
Thread	ROLL TAP DRILL
	5.900 MM

Thread	CLOSE FIT DRILL
	F 0.257 INCH
Thread	FREE FIT DRILL
	H 0.266 INCH
Thiead	PITCH DIAMETER
	MIN 0.227 INCH
Thread	PITCH DIAMETER
	MAX 0.231 INCH
	MINOR DIAMETER
	MIN 0.211 INCH
$\xrightarrow{\text { Thread }}$	MINOR DIAMETER
	MAX 0.220 INCH
Thread	MAJOR DIAMETER
	MIN 0.250 INCH

5. Switch to Thread Class 2A:

Conv Thread Thread (Thread Class)
 U.S. EXT. THREAD 2A
 6. Clear the display and find the available External Thread characteristics:

 2.| On/C | 0. |
| :---: | :---: |
| | THREAD SIZE |
| | 2A 0.25-28 INCH |
| Thread | THREAD PITCH |
| | 0.036 INCH |
| Thread | ROD SIZE |
| | 0.250 INCH |
| Thread | COLD FORM SIZE |
| | 0.224 INCH |
| Thread | PITCH DIAMETER |
| | MAX 0.226 INCH |

Thread	PITCH DIAMETER
	MIN 0.223 INCH
Thread	MAJOR DIAMETER
	MAX 0.249 INCH
Thread	MAJOR DIAMETER
	MIN 0.243 INCH
Thread	MINOR DIAMETER
	MAX 0.207 INCH

Metric Thread Size

Find the available Internal and External Thread characteristics for a $5 \mathrm{~mm}, 0.75 \mathrm{~mm}$ Pitch screw with a Tolerance Class of 4 H :

Note: The default Metric Tolerance Class is 6 H (Internal). To view the current Tolerance Class, press Conv $\begin{gathered}\text { Thread } \\ \text { siza } \\ \text { after entering the desired }\end{gathered}$ Thread Size. To change the class, press

1. Set Tolerance Class to Internal 4H:

2. Enter the Thread Size:

THREAD SIZE 4H 5. - MM
3. Enter the Thread Pitch and store the final Thread Size:

$$
\bullet\left(5 \sqrt{\text { Thread }} \begin{array}{lll}
\text { THREAD SIZE } \\
4 \mathrm{Sza} & 5 .-0.75 \mathrm{MM}
\end{array}\right.
$$

4. Find the available Internal Thread characteristics:

$\substack{\text { Thread } \\ \text { Size }}$	TAP DRILL SIZE
	4.250 MM

	ROLL TAP DRILL
	\#14 0.182 IN
Thercd	CLOSE FIT DRILL 5.300 MM
Thead	FREE FIT DRILL $5.800 \text { MM }$
Thricad	PITCH DIAMETER MIN
T_{3}	PITCH DIAMETER MAX
This	MINOR DIAMETER MIN \quad 4.188 M
Thercad	MINOR DIAMETER MAX \quad 4.306 M
Theaca	MAJOR DIAMETER $\begin{array}{ll}\text { MIN } & 5.000 \\ \text { MM }\end{array}$

5. Switch to External $4 g$ Tolerance Class:
Conv Thread infead (Thread Class)
MM EXT. THREAD
4 g
6. Clear the display and find the available External Thread characteristics: 4.

On/C	0.
Theread	THREAD SIZE
	$4 \mathrm{~g} \quad$ 5. 0.75 MM
Thered	ROD SIZE
	5.000 MM
Whiced	COLD FORM SIZE
	4.452 MM
	PITCH DIAMETER
	MAX \quad 4.491 MM

Theread	PITCH DIAMETER
	MIN $\quad 4.435 \mathrm{MM}$
Thyega	MAJOR DIAMETER
	MAX $\quad 4.978$ MM
Thised	MAJOR DIAMETER
	MIN $\quad 4.888$ MM
Thyered	MINOR DIAMETER
	$\begin{array}{ll}\text { MAX } & \text { 4.166 MM }\end{array}$

Custom Thread Percentage

The Machinist Calc Pro 2 uses a default Thread Grip Percentage of 75% when calculating Tap Drill sizes. With the custom Percentage Thread function, you can enter a different value to calculate Tap Drill sizes.
Calculate the Tap Drill Size for a 0.25 Inch, 26 TPI screw, then change the Thread Grip Percentage to 50% and calculate the new Tap Drill Size:
Conv \boldsymbol{X} ALL CLEARED 0.

1. Enter the Thread Size and calculate the Cut Tap and Roll Tap Drill Sizes:

	$\begin{array}{ll}\text { THREAD SIZE } \\ \text { 2B } & 0.25-\mathrm{INCH}\end{array}$
	THREAD SIZE
	2B 0.25-26 INCH
Theed	THREAD PITCH 0.038 INCH
Thead	TAP DRILL SIZE
	\#3 0.213 INCH
Trifed *	ROLL TAP DRILL
	5.900 MM

2. Change the Thread Grip Percentage to 50\% and calculate the new Cut Tap and Roll Tap Drill Sizes:

* Repeated presses of Theacd will scroll through the inputs and outputs starting with the close Fit Drill Size.

WIRE SIZES AND 3-WIRE MEASUREMENTS

Wire Size

If you know your Thread Size, you can find the Ideal, Maximum and Minimum Wire Sizes you can use for that size Screw Thread.

Find the Ideal, Maximum and Minimum Wire Sizes for measuring a 0.375" Thread with 16 Threads per Inch:

On/C On/C \square
0.

1. Enter the Thread Size:

$$
\bullet 375 \text { Inch } \begin{gathered}
\text { Thread } \\
5 z e g \\
\hline z e \\
\hline
\end{gathered}
$$

THREAD SIZE

2B
2. Enter the Threads per Inch:

THREAD SIZE
2B $\quad 0.375-16$ INCH
3. Find the Ideal, Maximum and Minimum Wire Sizes:

Conv SFM (Wire Size)	IDEAL WIRE SIZE 0.036 INCH
	MAX WIRE SIZE
SFM	0.056 INCH
SFM	MIN WIRE SIZE
SFM	0.035 INCH

3-Wire Measurement - Known Thread Size and Wire Size

You can find the Minimum and Maximum 3-Wire Measurements as well as the Pitch Diameters if you know the Thread Size and the Wire Size you want to use.
Note: When solving for 3-Wire Measurements and Pitch Diameters, the calculator assumes the equivalent External Thread Type if an Internal Thread Type is set (i.e., Internal 2B is assumed External 2A for U.S. Threads; Internal 6H is assumed External 6h for Metric Threads).

Find the Minimum and Maximum allowable 3-Wire Measurements and Pitch Diameters for a 0.375 - 16, Class 2A (External) screw using 0.040 Inch wire:

1. Set the Thread Class to $2 A$:

(2) Conv Vhread * (Thread Class)

U.S. EXT. THREAD 2A
2.

* If necessary, continue pressing Thread until the desired External Thread Class is displayed.

2. Enter the Thread Size:

$$
\bullet 375 \text { Inch } \begin{gathered}
\text { Thread } \\
\text { size }
\end{gathered}
$$

THREAD SIZE

2A

0.375 - INCH
3. Enter the Threads per Inch:
THREAD SIZE
2A $\quad 0.375-16$ INCH
4. Enter the Wire Size**:

- 04 Conv SFM (Wire Size)

5. Find the Minimum 3-Wire Measurement:

Conv RPM (3W Measure)

3-WIRE MEASURE	
MIN	0.395 INCH

- \square

6. Find the Maximum 3-Wire Measurement:

RPM	3-WIRE MEASURE MAX		0.399 INCH

7. Find the Minimum Pitch Diameter:

RPM | PITCH DIAMETER | |
| :--- | :--- |
| MIN | 0.329 INCH |

8. Find the Maximum Pitch Diameter:

** If no Wire Size is entered, the calculated Ideal Wire Size will be used to find the 3-Wire Measurement.

Pitch Diameter - Known 3-Wire Measurement and Wire Size

You can also find the measured Pitch Diameter if you know the 3-Wire Measurement and the Wire Size used to obtain the measurement.

Find the Pitch Diameter of a $0.375-16$, Class 2A (External) screw with a 3-Wire Measurement of 0.3975 Inches obtained using a 0.040 Inch wire:

1. If necessary, set the Thread Class to 2A:

U.S. EXT. THREAD

 2A 2.* If necessary, continue pressing
 until the desired External Thread Class is displayed.

2. Enter the Thread Size:

$$
\bullet 3,7 \text { Inch thread }
$$

THREAD SIZE	
2A	$0.375-$ INCH

3. Enter the Threads per Inch:

THREAD SIZE
2A
0.375-16 INCH
4. Enter the Wire Size**:

$$
\bullet 0\left(4 \text { Conv SFM (Wire Size) } \begin{array}{r}
\text { STORED WIRE SIZE } \\
0.04 \text { INCH }
\end{array}\right.
$$

5. Enter the 3-Wire Measurement:

$\bullet 3$	75 Conv RPM
	(3-W Measure)

3-WIRE MEASURED 0.3975 INCH
6. Find the Pitch Diameter:

RPM	PITCH DIAMETER
	0.332 INCH
	STORED WIRE SIZE
	0.04 INCH

**If no Wire Size is entered, the calculated Ideal Wire Size will be used to find the Pitch Diameter.

BOLT PATTERN

With the Machinist Calc Pro 2, you can determine a Bolt Pattern by entering the Bolt Circle Diameter, the Number of Bolt Holes and the Angle of the first bolt hole (optional). You can also enter an optional center x and y-coordinate of the Bolt Pattern.

In addition to calculating the x and y -coordinates for each bolt hole, the Bolt Pattern function also calculates the hole center-to-center spacing (i.e. On-center distance from hole to hole).

Bolt Pattern

Calculate the Bolt Pattern for a layout with a 3.5" Diameter, a 20° Start Angle and 3 Bolts. The center x-coordinate is $10 "$ and the center y-coordinate is $15^{\prime \prime}$.

Note: When determining angles, 0° is at the 3 o'clock position and the rotation goes counterclockwise.

1. Enter the center x-coordinate:

ADJACENT	
(x)	$10 . I N C H$

2. Enter the center y-coordinate:

3. Enter the Start Angle:

ANGLE	
(Θ)	$20 .^{\circ}$

4. Enter Bolt Circle Diameter:

DIAMETER

3.5 INCH
5. Enter the Number of Bolts:

NUMBER OF BOLTS
6. Calculate center-to-center Spacing and the x and y coordinates:

	OC SPACING
	3.031 INCH
Diam	BOLT POSITION
	X-Ø1 11.644 INCH
Diam	BOLT POSITION
	Y-Ø1 15.599 INCH
Diam	BOLT POSITION
	X-Ø2 8.659 INCH
Diam	BOLT POSITION
	Y-ø2 16.125 INCH
Diam	BOLT POSITION
	X-Ø3 $\quad 9.696 \mathrm{INCH}$
Diam	BOLT POSITION
	Y-Ø3 13.277 INCH
Diam	BOLT CIRCLE DIA
	X-Ø2 3.500 INCH
m	BOLT PATTERN CTR
	X-ØØ 10.000 INCH

Diam

Diam

BOLT PATTERN CTR
Y-Ø STARTING ANGLE$\quad 15.000$ INCH

RIGHT TRIANGLE FUNCTIONS

With the Machinist Calc Pro 2, you can easily solve Right Triangle problems by simply entering two of four variables:
Adjacent, Opposite, Hypotenuse or Angle.

Right Triangle - Based on Adjacent and Opposite Legs

Calculate the Hypotenuse, Angle and Adjacent Angle of a right triangle with an Adjacent Leg of 3 Inches and an Opposite Leg of 4 Inches:

On/C On/C \square
0.

1. Enter the Adjacent Leg Length:

3 InchAddj) (x)	ADJACENT (x)	3. INCH

2. Enter the Opposite Leg Length:

4 Inch $O_{p} p$ $\begin{array}{ll}\text { OPPOSITE } \\ \text { (y) } & \text { 4. INCH }\end{array}$
3. Solve for the Hypotenuse:

HYPOTENUSE

(r) $\quad 5.000$ INCH
4. Solve for the Angle (A):

ANGLE	
(θ)	53.130°

5. Solve for the Adjacent Angle (B):

ADJACENT ANGLE

36.870°
Right Triangle - Based on Hypotenuse and Angle
Calculate the Adjacent Angle, Adjacent Leg and Opposite Leg of a right triangle with a Hypotenuse of 12 Inches and a known Angle of 35.34° :

On/C On/C

1. Enter the Hypotenuse:

1 (2 Inch Hys
HYPOTENUSE
(r)
12. INCH
2. Enter the known Angle:

$$
35 \cdot 3 \text { Angle }
$$

ANGLE
(Θ)
35.34°
3. Solve for the Adjacent Angle:

ADJACENT ANGLE 54.660°
4. Solve for the Adjacent Leg:
5. Solve for the Opposite Leg:

OPPOSITE
(y) 6.941 INCH

CIRCLE CALCULATIONS

Circumference and Area - Based on Diameter

Find the Area and Circumference of a circle with a Diameter of 11 Inches:

BASIC D:M:S AND TRIGONOMETRY EXAMPLES

Converting Degrees:Minutes:Seconds
Convert $23^{\circ} 42^{\prime} 39^{\prime \prime}$ to decimal degrees:

On/C On/C	0.
(2) 3 (4) 2 (3)	DMS 23.42.39
Conv \bullet (dms \downarrow - deg)	23.710833°

Convert 44.29° to degrees:minutes:seconds format:

	On/C On/C		0.
(4) 4 2 9 conv ${ }^{(1)}$	(dms $\downarrow \downarrow$ deg)	DM	

Note: Improperly formatted entries will be redisplayed in the correct convention after any operator key is pressed. For example, $30^{\circ} 89^{\prime}$ entered will be corrected and displayed as $31^{\circ} 29^{\prime} 0^{\prime \prime}$ or 31.483333°.

Time Calculations Using D:M:S

Add 7 Hours 45 Minutes 33 Seconds to 11 Hours 16 Minutes 20 Seconds:

On/C On/C	0.
7) (4) 0^{3} (3)	DMS 7.45.33 ${ }^{\circ}$
110 0 (20 0	DMS 19.01.53 ${ }^{\circ}$

Trigonometric Functions
The following drawing and formulas list basic trigonometric formulas, for your reference:

Given Side A and angle a, find:
Side C
A 웅 a Conv 융모 (Cos) \square
(e.g., 3)Inch 웅 (3) (1) 3 Conv 0^{2}

Side B
A \boldsymbol{X} a Conv Hyp (Tan) $^{\boldsymbol{y}}$
Angle b
$90^{\circ}-\mathrm{a} \boldsymbol{\theta}$
Given Side A and angle b, find:
Side B
Side C
Angle a
A 웅 b Conv Hy (Tan) ${ }^{2}$

$90^{\circ}-\mathrm{b} \boldsymbol{\theta}$
(cont'd)
Given Side B and angle a, find:
Side A
Side C

Given Side C and angle a, find:
Side A
C X a Conv Oppp (Cos)
Side B

Given Side A and Side C, find:

Angle a	A - C Cony linch (ArcCos)
Angle b	

Given Side B and Angle b, find:
Side C
Side A

WORKPIECE MATERIALS CONVERSION TABLE (2 of 3)							
Material	Hardness	AISI/ASTM/ SAE	DIN	WR (DIN)	JIS	BS	SS
Austenitic Stainless Steel	150-200 HB	304	X5CrNi18-9 X2CrNi19-1; GX2CrNiN18-9 X2CrNiN18-10 X5CrNi18-10 (X4CrNi18-10)	$\begin{aligned} & 1.4306 \\ & 1.4311 \\ & 1.4301 \end{aligned}$	$\begin{gathered} \text { SCS 19, } \\ \text { SUS 304 L } \\ \text { SUS 304LN } \\ \text { SUS } 304 \end{gathered}$	304 S 11; LW 20, LWCF 20, S. 536, T. 74, 304 C 12 (LT 196), 305 S 11, 304 S 61, 304 S 15; 304S16; 304 S 17; LW21; LWCF 21; 304 S 31	$\begin{aligned} & 2352 \\ & 2371 \\ & 2332 \\ & 2333 \end{aligned}$
Austenitic Stainless Steel	150-200 HB	316	X5CrNiMo 17-12-2 (X4CrNiMo 17-12 2) X3CrNiMo 17-13-3 (X5CrNiMo 17-13-3) X6CrNiMoNb 17-12-2	$\begin{aligned} & 1.4401 \\ & 1.4436 \\ & 1.4580 \end{aligned}$	SUS 316	316 S 13, 17,19, 31,33 LW23; LWCF 23 318 S 17	$\begin{aligned} & 2347 \\ & 2343 \end{aligned}$
Martensitic Stainless Steel	150-200 HB	410	$\begin{gathered} \mathrm{X} 6 \mathrm{Cr} 13, \mathrm{X} 7 \mathrm{Cr} 14 \\ \mathrm{X} 12 \mathrm{Cr} 13 ; \times 10 \mathrm{Cr} 13 ; \\ \text { GX12Cr13 } \end{gathered}$	$\begin{aligned} & 1.4000 ; \\ & 1.4001 \\ & 1.4006 \end{aligned}$	$\begin{gathered} \text { SUS 403, } \\ 410 \text { S, } 429 \\ \text { SUS } 410 \end{gathered}$	$\begin{gathered} 403 \text { S } 17 \\ 410 \mathrm{~S} 21 ; \\ 410 \mathrm{C} 21 ; \text { ANC 1A } \end{gathered}$	$\begin{aligned} & 2301 \\ & 2302 \end{aligned}$
Ferritic Stainless Steel	135-185 HB	430	X6Cr17	1.4016	SUS 430	$\begin{aligned} & 430 \text { S17; } \\ & 430 \text { S } 18 \end{aligned}$	2320
Mold type Tool Steel	150-200 HB	P20		1.2330			
Hot work type Tool Steel	200-250 HB	H13	X40CrMoV51	1.2344	SKD61	BH13	2242
Copper Al Alloy	120 HB	2024-T3	AlCuMg2	3.1355	$\begin{gathered} \text { A2024, } \\ \text { A3×4 } \end{gathered}$	$\begin{aligned} & \text { 2L97, } \\ & \text { 2L98 } \end{aligned}$	

WORKPIECE MATERIALS CONVERSION TABLE (3 of 3)							
Material	Hardness	AISI/ASTM/ SAE	DIN	WR (DIN)	JIS	BS	SS
Magnesium and Silicon Al Alloy	95 HB	6061-T6	AlMgSiCu	3.3211	$\begin{gathered} \mathrm{A} 6061, \\ \mathrm{~A} 2 \times 4 \end{gathered}$	6061, H20, L117, L118	
Silicon, Copper, and Magnesium Cast Al	125 HB	A390.0-T5					
Ti-6Al-4V Alloy	32-36 HRC	Alpha-beta alloy	TiAl6V4			TA 10-13; TA 28	
$\begin{gathered} \hline \text { Ti-10V-2Fe-3AI } \\ \text { Alloy } \end{gathered}$	38-41 HRC	Beta alloy					
Nickel-base Heat Resistant alloys	36 HRC	Alloy 718	NiCr19Fe19NbMo	2.4668		HR8	
Nickel-base Heat Resistant alloys	89 HRB	Alloy X	NiCr22FeMo	2.4665		HR6,204	
Cobalt-base Heat Resistant alloy	37 HRC	Haynes alloy 188					

APPENDIX B - DEFAULT SETTINGS

After a Clear All (Conv \boldsymbol{X}), your calculator will return to the

 following settings:
STORED VALUES
 DEFAULT VALUE

Material

Process

Tool

Number Of Teeth
Drill Cut Angle
Weight per Volume
\% Thread Grip
Thread Classification
U.S. Threads

Metric Threads

None
Face Milling
High Speed Steel Tool
118°
490 Pounds Per
Cubic Foot
75\%

Internal 2B

Internal 6H
If you replace your batteries or perform a Full Reset* (turn calculator off, hold down \boldsymbol{X} and press $\mathbf{O n} / \mathbf{C}$) your calculator will return to the following settings (in addition to those listed above):

PREFERENCE SETTINGS
 DEFAULT VALUE

Default Unit Format Mode
Fractional Resolution
Functional Result Rounding
Area Answer Format
Volume Answer Format
Fractional Mode
Mathematical Operation

* Depressing the Reset button located above the Diam key will also perform a Full Reset.

APPENDIX C - PREFERENCE SETTINGS

The Machinist Calc Pro 2 has Preference Settings that allow you to customize or set desired unit formats and calculations. If you replace your batteries or perform a Full Reset* (turn calculator off, hold down \boldsymbol{X}, and press $O n / C$), your calculator will return to the following settings (in addition to those listed on the previous page), with the default setting for each preference listed first:

*Depressing the Reset button located above the Diam key will also perform a Full Reset.

PREFERENCE OPTIONS

1) Default Unit - U.S. MODE: unitless values

Format Mode
2) Fractional

Resolution

- 1/64: displays fractional values to the nearest 64th of an Inch.
$-1 / 2$: displays fractional values to the nearest half Inch.
- 1/4: displays fractional values to the nearest quarter of an Inch.
- 1/8: displays fractional values to the nearest 8th of an Inch.
- 1/16: displays fractional values to the nearest 16th of an Inch.
- 1/32: displays fractional values to the nearest 32nd of an Inch.

3) Functional $\quad \mathbf{- 0 . 0 0 0}$ (FIX): calculation results using

Result Rounding
4) Area Answer Format Machinist functions are always displayed to three decimal places.

- 0.0000 (FIX): calculation results using Machinist functions are always displayed to four decimal places.
- 0. (ACTUAL): calculation results using Machinist functions are always displayed to the maximum number of decimal places.
- STANDARD: if units entered are the same - e.g., Inch x Inch - area answers will remain in this format (Square Inch), but if units entered are different - e.g., Inches x Feet - area answers will be displayed in Square Feet.
- SQUARE FEET: area answers always displayed in Square Feet, regardless of unit entry - e.g., Inches x Inches = Square Feet.
- SQUARE INCHES: area answers always displayed in Square Inches, regardless of unit entry - e.g., Feet x Feet = Square Inches.
- SQUARE METERS: area answers always displayed in Square Meters, regardless of unit entry - e.g., Feet x Feet $=$ Square Meters.

5) Volume

Answer
Format

- STANDARD: if units entered are the same - e.g., Inch x Inch x Inch - the answer will remain in this format (Cubic Inch), but if units entered are different - e.g., Feet x Feet x Inches - volume answer will be displayed in Cubic Inch.
- CUBIC FEET: volume answers always displayed in Cubic Feet, regardless of unit entry - e.g., Inches x Inches x Inches = Cubic Feet.
- CUBIC METERS: volume answers always displayed in Cubic Meters, regardless of unit entry - e.g., Feet x Feet x Feet $=$ Cubic Meters.
- CUBIC INCHES: volume answers always displayed in Cubic Inches, regardless of unit entry - e.g., Feet x Feet x Feet = Cubic Inches.

6) Fractional Mode

- STANDARD: fractions are displayed to the nearest Fractional Resolution.
- CONSTANT: fractions are displayed in the set Fractional Resolution. Operation

7) Mathematical - ORDER OF OPERATIONS: the calculator uses the Order of Operations Method ($10+4 \times 5=30$).

- ORDER OF ENTRY: the calculator uses the Order of Entry Method (as entered: $10+4 \times 5=70$).

APPENDIX D - BASIC CALCULATOR FUNCTIONS AND DIMENSIONAL MATH OPERATIONS

ENTERING DIMENSIONS

Note: Unlike other Calculated Industries/Construction Master calculators, the Machinist Calc Pro 2 does not have a dedicated Feet key. Feet is a secondary function located above the 7 key, so you have to use the Conv key, then 7 to enter or calculate dimensions using Feet. Below are some examples.

Enter 2 Feet, then label as square and cubic units:
2 Feet
2 square Feet
2 cubic Feet

2 Conv 7	2 FEET
Conv 7	2 SQ FEET
Conv 7	2 CU FEET

Enter 2 Feet, 3 Inches:
(2) Conv 7 (3) Inch 2 FEET 3 INCH

Linear Dimensions

Examples of how linear dimensions are entered (press On/C after each entry):
23 mils
(2) (3) $110000^{\prime \prime}$
4.5 Inches
(4) 5 Inch

95 millimeters
(9) 5 mm

1,320 Feet
(1) (3) 2 Conv 7

201 meters
(2) 0 (1)Conv 9

Square and Cubic Dimensions

Examples of how square and cubic dimensions are entered (press On/C after each entry):

14 square Inches	104 Inch Inch
11 square millimeters	101 mm mm
1.5 cubic meters	105 Conv $9.9(9)$
3 cubic Feet	3 Conv 7 conv 7 conv 7

CONVERSIONS

Linear Conversions

Convert 10 Feet 6 Inches to other dimensions, including metric:

On/c On/c	0.
(1) Conv 76 Inch	10 FEET 6 INCH
Conv $11000{ }^{\prime \prime}$ *	126.000 INCH
Conv 7 (Feet)	10.5 FEET
Conv Inch	126. INCH
Conv mm	3200.4 MM
Conv 5 (cm)	320.04 CM
Conv 9 (m)	3.2004 M

* Converting a linear value using the $11000{ }^{\prime \prime}$ key will result in the decimal Inch equivalent of the value, rounded to three decimal places. Only unitless values are multiplied by 0.001 Inches when using this key.

Convert 15 Feet 9-1/2 Inches to decimal Feet. Then convert back to Feet-Inch-Fractions.

On/C On/C	0.
(1) Conv 7 (9)Inch $1 / 2$	15 FEET 9-1/2 INCH
Conv 7 (Feet)	15.791667 FEET
Conv 7	15 FEET 9-1/2 INCH

Convert 17.32 Feet to Feet-Inch-Fractions:

On/C On/C	0.
(17) 3 (2) Conv 7 (Feet)	17.32 FEET
\bigcirc Conv 7	17 FEET 3-27/32 INCH
Conv 7	17.32 FEET
Conv Inch	207.84 INCH
Conv 7 Conv 7	17 FEET 3-27/32 INCH

Convert 8-1/8 Inches to decimal Inches. Then convert to decimal Feet:

On/C On/C	0.
8 Inch 178	8-1/8 INCH
Conv Inch	8.125 INCH
Conv 7 (Feet)	0.6770833 FEET

Convert 9.0625 Inches to decimal Feet.

On/C On/C	0.
(9)0662 5 lnch	9.0625 INCH
Conv 7 (Feet)	0.7552083 FEET

Square and Cubic Conversions
Convert 6 square Feet to other square dimensions:

On/C On/C	0.
(6)Conv 7 Conv 7 (Feet)	6 SQ FEET
Conv mm	557418.24 SQ MM
Conv 9 (m)	0.5574182 SQ M
Conv 5 (cm)	5574.1824 SQ CM

Convert 0.05 cubic meters to other dimensions:

On/C On/C	0.
- 05 Conv 9 9 9 (m)	0.05 CU M
Conv mm	50000000. CU MM
Conv 5 (cm)	50000. CU CM
Conv Inch	3051.1872 CU INCH
Conv 7 (Feet)	1.7657333 CU FEET

Weight Conversions

Convert 1.5 tons to pounds and kilograms:

On/C On/C	0.
(1) 0 Conv 6 (tons)	1.5 TON
Conv 11 (kg)	1360.7771 KG
Conv 4 (lbs)	3000. LBS

Weight per Volume and Volume Conversions

Convert 2 cubic Feet of stainless steel to pounds, tons, kilograms, and metric tons if the steel weighs 7,480 kilograms per cubic meter:
\square

1. Store the weight per volume:

2. Enter steel volume:

3. Convert to pounds, tons, kilograms and metric tons:
Conv (4 (lbs) \quad LBS. 933.92229

Conv 6 (tons)	TON 0.4669611
Conv $1(\mathrm{~kg})$	KG 423.62003
(met tons)	MTON 0.42362

4. Change the weight per volume back to the default value:

400 Conv 00 (wt/vol) LBS./ CU. FEET 490.

* The number of 0 presses may vary, depending on the last units displayed when wt/vol was last recalled/stored. By default, pounds per cubic foot is displayed first.

Calculating Percentages

The \% key can be used for finding a given percent of a number or for working add-on, discount or division percentage calculations. It can be used with any type of number, in any dimension (Feet, Inch, millimeter, etc.) and any type of convention (non-dimensioned, linear, square or cubic).
Find 18% of 50 Feet:

Take 20\% from 17 Feet 6 Inches:

BASIC MATH OPERATIONS

Adding and Subtracting Dimensions

Add the following measurements:

- 6 Feet 2-1/2 Inches
- 11 Feet 5-1/4 Inches
- 18.25 Inches

Then subtract 2-1/8 Inches:

(6)Conv 7 (2) Inch 1/2 $2 \pm$	6 FEET 2-1/2 INCH
1) Conv 7 (5) Inch 174 (+	17 FEET 7-3/4 INCH
(1) 8 (2) 5 lnch	19 FEET 2 INCH
(2)Inch 17	18 FEET 11-7/8 INCH

Multiplying Dimensions

Multiply 5 Feet 3 Inches by 11 Feet 6-1/2 Inches:

(5) Conv 7 (3) Inch X	5 FEET 3 INCH
1 1 Conv 76 Inch 1/2	60.59375 SQ FEET

Multiply 2 Feet 7 Inches by 10:

Dividing Dimensions
Divide 30 Feet 4 Inches by 7 Inches:

Divide 20 Feet 3 Inches by 9:

APPENDIX E - ACCURACY/ERRORS, AUTO SHUT-OFF, BATTERIES, RESET

ERROR CODES

DISPLAY	ERROR TYPE
OVERFLOW	Overflow (too large)
MATH ERROR	Divide by 0
DIMENSION ERROR	Dimension error
ENTRY ERROR	Invalid entry error
AUTO SHUT-OFF	

Your calculator is designed to shut off after about 4 minutes of non-use.

BATTERY

The Machinist Calc Pro 2 uses one CR2025 (included). This should last approximately 800 hours of actual use. Should your calculator display become very dim or erratic, replace the battery.

Note: Please use caution when disposing of your old battery, as it contains hazardous chemicals. Replacement batteries are available at most discount or electronics stores. You may also call Calculated Industries at 1-775-885-4900.

Battery Replacement Instructions

While the calculator is off, turn the calculator over and use a \#1 Phillips screwdriver to remove the battery holder screw located near the center at the top. With the screw removed, pull battery holder out, remove old battery, and slide new battery into holder. The negative side of the battery should be facing you as you insert the battery holder into the calculator. Replace screw using a \#1 Phillips screwdriver.

RESET

If your calculator should ever "lock up," insert the tip of a paperclip or a small diameter wire into the small Reset hole above the Diam key.

REPAIR AND RETURN

RETURN GUIDELINES

1. Please read the Warranty in this User's Guide to determine if your Calculated Industries product remains under warranty before calling or returning any device for evaluation or repairs.
2. If your product won't turn on, check the battery as outlined in the User's Guide.
3. If you need more assistance, please go to the website listed below.
4. If you believe you need to return your product, please call a Calculated Industries representative from 7 a.m. to 4 p.m. Pacific Time for additional information and a Return Authorization (RA).

Call Toll Free: 1-800-854-8075

Outside USA: 775-885-4900
www.calculated.com/warranty

WARRANTY

Calculated Industries ("CI") warrants this product against defects in materials and workmanship for a period of one (1) year from the date of original consumer purchase in the U.S. If a defect exists during the warranty period, Cl at its option will either repair (using new or remanufactured parts) or replace (with a new or remanufactured calculator) the product at no charge.

Abstract

THE WARRANTY WILL NOT APPLY TO THE PRODUCT IF IT HAS BEEN DAMAGED BY MISUSE, ALTERATION, ACCIDENT, IMPROPER HANDLING OR OPERATION, OR IF UNAUTHORIZED REPAIRS ARE ATTEMPTED OR MADE. SOME EXAMPLES OF DAMAGES NOT COVERED BY WARRANTY INCLUDE, BUT ARE NOT LIMITED TO, BATTERY LEAKAGE, BENDING, A BLACK "INK SPOT" OR VISIBLE CRACKING OF THE LCD, WHICH ARE PRESUMED TO BE DAMAGES RESULTING FROM MISUSE OR ABUSE.

To obtain warranty service in the U.S., please go to the website. A repaired or replacement product assumes the remaining warranty of the original product or 90 days, whichever is longer.

Non-Warranty Repair Service - U.S.A.

Non-warranty repair covers service beyond the warranty period, or service requested due to damage resulting from misuse or abuse. Contact Calculated Industries at the number listed above to obtain current product repair information and charges. Repairs are guaranteed for 90 days.

To obtain warranty or non-warranty repair service for goods purchased outside the U.S., contact the dealer through which you initially purchased the product. If you cannot reasonably have the product repaired in your area, you may contact Cl to obtain current product repair information and charges, including freight and duties.

Disclaimer

CI MAKES NO WARRANTY OR REPRESENTATION, EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THE PRODUCT'S QUALITY, PERFORMANCE, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. AS A RESULT, THIS PRODUCT, INCLUDING BUT NOT LIMITED TO, KEYSTROKE PROCEDURES, MATHEMATICAL ACCURACY AND PREPROGRAMMED mATERIAL, IS SOLD "AS IS," AND YOU THE PURCHASER ASSUME THE ENTIRE RISK AS TO ITS QUALITY AND PERFORMANCE. IN NO EVENT WILL CI BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM ANY DEFECT IN THE PRODUCT OR ITS DOCUMENTATION.
The warranty, disclaimer, and remedies set forth above are exclusive and replace all others, oral or written, expressed or implied. No Cl dealer, agent, or employee is authorized to make any modification, extension, or addition to this warranty.
Some states do not allow the exclusion or limitation of implied warranties or liability for incidental or consequential damages, so the above limitation or exclusion may not apply to you. This warranty gives you specific rights, and you may also have other rights, which vary from state to state.

FCC Class B

This equipment has been certified to comply with the limits for a Class B calculating device, pursuant to Subpart J of Part 15 of FCC rules.

Legal Notes

Software copyrighted and licensed by Calculated Industries, Inc., 2014. User's Guide copyrighted by Calculated Industries, Inc., 2014. Machinist Calc ${ }^{\circledR}$ and Calculated Industries ${ }^{\circledR}$ are registered trademarks of Calculated Industries, Inc. © 2014.

ALL RIGHTS RESERVED Designed in the U.S.A.

LOOKING FOR NEW IDEAS

Calculated Industries, a leading manufacturer of specialfunction calculators and measuring instruments, is always looking for new product ideas in these areas.

If you have a new product idea, please visit our "Bright Idea" page at www.calculated.com/brightidea.asp. For suggestions about improving this product or other products, please visit us at www.calculated.com under "Contact Us". Thank You.

CALCULATED
 4840 Hytech Drive
 Carson City, NV 89706 U.S.A.
 1-800-854-8075 • Fax: 1-775-885-4949
 E-mail: info@calculated.com
 www.calculated.com

Designed in the United States of America.
Printed in China.
11/14
UG4088E-B

[^0]: * Thread Pitch is only displayed for Numeric and U.S. Thread Sizes. ** If the resulting hole size is greater than 2 Inches or 50 mm , the actual hole size will be displayed instead of adjusting to the closest Drill Size.

[^1]: * Default settings

